Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747630

RESUMO

A novel Fe(III) complex, Fe-tBPCDTA, was synthesized and explored as a potential contrast agent for MRI. Compared to established agents like Fe-EDTA and Fe-tCDTA, Fe-tBPCDTA exhibited moderate relaxivity (r1 = 1.17 s-1·mmol-1) due to its enhanced second-sphere mechanism. It also displayed improved kinetic inertness, lower cytotoxicity, and enhanced redox stability. In vivo studies demonstrated its function as an extracellular fluid agent, providing tumor contrast comparable to that of Gd-DTPA at a higher dosage. Complete renal clearance occurred within 24 h. These findings suggest Fe-tBPCDTA as a promising candidate for further development as a safe and effective extracellular MRI contrast agent.

2.
Angew Chem Int Ed Engl ; 63(8): e202315599, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38169100

RESUMO

Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 µmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.

3.
Angew Chem Int Ed Engl ; 61(37): e202203851, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876026

RESUMO

Aqueous lead sulfide (PbS) quantum dots (QDs) synthesized by traditional methods are unstable, so that they are usually coated with cadmium sulfide (CdS) to prevent oxidation, which are complicated and not satisfactory for mass production. Here, stable ternary Pb1-x Cdx S QDs were synthesized by in situ coprecipitation of Pb4-n Cdn O4 bimetallic clusters in an aqueous solution, which possess a uniform size of 4.0±0.2 nm and the second near-infrared (NIR-II) emission at 1100 nm with photoluminescence quantum yield (PLQY) as high as 17.72 %. Stored at 4 °C and in colloidal form, the PLQY of Pb1-x Cdx S QDs remained at 90.9 % of the initial value after 15 days, while stored as powder, the spectra did not change after 5 months. The high PLQY and good water compatibility of Pb1-x Cdx S QDs provide a good performance in vivo vasculature imaging and lymphatic system imaging at a very low power density (10 mW cm-2 ) in the NIR-II window.


Assuntos
Pontos Quânticos , Cádmio , Água
4.
Chem Soc Rev ; 51(2): 434-449, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34931205

RESUMO

Porous organic polymers (POPs) have attracted increasing attention and emerged as a new research area in polymer chemistry. During the past decade, the intense desirability for application in aqueous scenarios has spawned the development of a specific class of POPs, i.e., water-soluble or dispersible porous organic polymers (WS-POPs) that can allow the implementation of porosity-based functions in aqueous media. In this Tutorial Review, aiming at providing a practical guide to this area, we will discuss recent advances in the preparation of WS-POPs through covalent/dynamic covalent, coordination and supramolecular approaches. As a result of their intrinsic and well-defined porosity, diverse topological architectures as well as unique water-processable features, many water-soluble/dispersible POPs have been demonstrated to exhibit potential for various applications, which include drug, DNA and protein delivery, bioimaging, photocatalysis, explosive detection and membrane separation. We will also highlight the related function of the representative structures. Finally, we provide our perspective for the future research, with a focus on the development of new structures and biofunctions.


Assuntos
Preparações Farmacêuticas , Polímeros , Porosidade , Água
5.
J Colloid Interface Sci ; 601: 773-781, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102406

RESUMO

Shape-controlled synthesis is essential for functional nanomaterials, allowing deeper insights intothe relationship between the structures and the catalytic properties. Synthesis of nanocrystals with particular morphologies are usually studied independently among various synthetic methods, those underline that different surface capping ligands or shape-directing agents bring about disparate shapes. However, a single quantitative parameter method is still lacking to realize precise control of well-defined morphology nanocrystals, especially anisotropic structures, which is essential to understanding the growth process of nanocrystals. Herein, we proposed a single-parameter-tuned synthesis strategy for preparation of shape-controlled gold nanocrystals by regulating the amount of iron carbonyl, by which we produced highly monodisperse Au nanocrystals with various shapes in organic phase including nanoplates (diameter of 16.02 ± 1.13 nm and thickness of 5.35 ± 0.58 nm), nanorods (length of 37.53 ± 3.73 nm and width of 5.26 ± 0.37 nm) and nanospheres (diameter of 8.26 ± 0.38 nm). The single-parameter-tuned method reveals the dual roles of iron carbonyl for controlling the shapes of gold nanocrystals including reductant and oxidative etchant and empowers versatility in synthetic methodology for other noble metals. Moreover, catalytic activity shifting in shapes of nanocrystals was revealed based on the reduction of 4-nitrophenol, showing that the as-synthesized Au nanoplates displayed the enhanced catalytic performance with the lowest activation energy. Our work provides a brand-new pathway for shape-controlled synthesis of noble-metal nanocrystals and has a strong practical value in application fields.


Assuntos
Nanopartículas Metálicas , Nanotubos , Catálise , Ouro , Ferro
6.
Chem Commun (Camb) ; 57(52): 6448-6451, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34096940

RESUMO

Through a bottom-up strategy, CdS quantum dots (QDs) doped with 12 gold atoms in each nanocrystal (NC) were prepared by cation exchange reactions. The (Au12) dopants inside the CdS matrix were directly observed using Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and quantitatively confirmed using the inductively coupled plasma atomic emission spectroscopy (ICP-AES) data. With a photoluminescence quantum yield (PLQY) of 37.5%, the as-prepared (Au12)@CdS QDs emitted light at 635 nm. Due to the injection of excited electrons from the lowest unoccupied molecular orbital (LUMO) of dopants to the conduction band (CB) of CdS, multiple fine peaks were observed in the photoluminescence excitation (PLE) spectra. By using clusters as starting materials, we demonstrate a universal approach for the precise tailoring of dopants and provide a pathway for band energy engineering of doped QDs.

7.
J Am Chem Soc ; 142(38): 16177-16181, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32914627

RESUMO

Water-soluble doped quantum dots have unique photophysical properties and functionalities as optical labels for bioimaging and chemo-/biosensing. However, doping in quantum dots is not easy due to the dopant-ion size mismatch and "self-purification" effect. Here, we demonstrate a successful preparation of Mn-, Cu-, and Ni-doped CdS quantum dots with bimetallic clusters instead of ions as building blocks under mild aqueous conditions up to gram scale. The representative Mn-doped quantum dots have uniform size, about 3.2 ± 0.5 nm, and emit at 620 nm. The doping concentration can be adjusted in the range 6.4%-25.7%. On the premise of good water solubility, they are stable and nontoxic so as to be directly used for cell imaging. Copper and nickel doping have similar results. Because of the close sizes of bimetallic clusters and the low reaction temperature, the challenges posed by dopant size mismatch and ion diffusion are ignored. X-ray absorption fine structure analysis proves that dopants are inside the quantum dots rather than on the surface, indicating that the "self-purification" effect can be effectively overcome. Furthermore, codoped ZnS quantum dots with adjustable emission are achieved, which validates the versatility of our new approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...